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Node-classification

• Molecules of compounds 
represented as graphs


• Atoms are nodes


• Chemical bonds are edges
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Node-classification

Task: Identify a functional group for each atom

• Molecules of compounds 
represented as graphs


• Atoms are nodes


• Chemical bonds are edges
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Node-classification

• Social network represented by a graph


• Individuals are nodes


• Social relationships are edges

Task: Identify social communities
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Node-classification
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Task: Identify fraudulent agents



Node-classification

Feature-rich relational data with  nodes: 
 and labels  for 


•  is the adjacency matrix of the graph


•  are -dimensional features for each node


Task: Infer the labels  for  given 

n
(A, X) ∼ 𝒟 yu u ∈ [n]

A ∈ {0,1}n×n

X ∈ ℝn×d d

yu u ∈ [n] (A, X)
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Statistical Data Model



Contextual Stochastic Block Model (CSBM)

: Number of classesC

Mixture of  distributions  on  with densities C P = {Pi}i∈[C] ℝd {ρi}i∈[C]

Edge-probability matrix Q =
q11 ⋯⋯ q1C
⋮ ⋱ ⋮

qC1 ⋯⋯ qCC

∈ [0,1]C×C
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Contextual Stochastic Block Model (CSBM)
 nodesn
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Contextual Stochastic Block Model (CSBM)
 nodes


 for all  
Latent class labels

n

yu ∼ Unif([C]) u ∈ [n]
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Contextual Stochastic Block Model (CSBM)
 nodes


 for all  
Latent class labels


 

n

yu ∼ Unif([C]) u ∈ [n]

A = (auv)u,v∈[n]
Pr(auv = 1 ∣ yu, yv) = qyuyv
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Q =
q11 ⋯⋯ q1C
⋮ ⋱ ⋮

qC1 ⋯⋯ qCC



Contextual Stochastic Block Model (CSBM)
 nodes


 for all  
Latent class labels


 






 

n

yu ∼ Unif([C]) u ∈ [n]

A = (auv)u,v∈[n]
Pr(auv = 1 ∣ yu, yv) = qyuyv

Q =
B
n

= (
bij

n )i,j∈[C]

bij = Ωn(log n)
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Q =
q11 ⋯⋯ q1C
⋮ ⋱ ⋮

qC1 ⋯⋯ qCC



Contextual Stochastic Block Model (CSBM)
 nodes


 for all  
Latent class labels


 






 

n

yu ∼ Unif([C]) u ∈ [n]

A = (auv)u,v∈[n]
Pr(auv = 1 ∣ yu, yv) = qyuyv

Q =
B
n

= (
bij

n )i,j∈[C]

bij = On(1)
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Q =
q11 ⋯⋯ q1C
⋮ ⋱ ⋮

qC1 ⋯⋯ qCC



Contextual Stochastic Block Model (CSBM)
Node attributes:


 for all  
Node attributes
Xu ∈ ℝd ∼ Pyu

u ∈ [n]
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Node attributes:


 for all  
Node attributes

Xu ∈ ℝd ∼ Pyu

u ∈ [n]

Gn = (A, X) ∼ CSBM(n, P,Q)

Contextual Stochastic Block Model (CSBM)
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Overview
• Understanding a graph convolution operation [ICML 2021]

• Improvement in separability threshold

• Generalization error of the linear classifier


• Effects of graph convolutions in multilayer networks [ICLR 2023]

• Isolate convolutions from the layers of a neural network

• Understand effects in terms of relevant signals


• Optimality of message-passing GNNs [NeurIPS 2023]

• Develop a notion of optimal classifier for node-classification problems

• Design a neural network architecture that can realize the optimal classifier



Part I
• Understanding a graph convolution operation [ICML 2021]

• Improvement in separability threshold

• Generalization error of the linear classifier


• Effects of graph convolutions in multilayer networks [ICLR 2023]

• Isolate convolutions from the layers of a neural network

• Understand effects in terms of relevant signals


• Optimality of message-passing GNNs [NeurIPS 2023]

• Develop a notion of optimal classifier for node-classification problems

• Design a neural network architecture that can realize the optimal classifier



• Effect of one graph convolution on a binary Gaussian mixture


• Comparison with baseline — absence of relational information


• Improvement in linear separability


• Generalization of the linear classifier on out-of-distribution relational data

Part I



Model and Assumptions
 
 

P = {𝒩(μ, σ2I),
𝒩(ν, σ2I)}

Q = (p q
q p)
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Model and Assumptions
Feature signal  

Graph signal 

ζ =
2∥μ∥

σ

γ =
|p − q |
p + q

 
 

P = {𝒩(μ, σ2I),
𝒩(ν, σ2I)}

Q = (p q
q p)



Model and Assumptions
Feature signal  

Graph signal 

ζ =
2∥μ∥

σ

γ =
|p − q |
p + q

Assumption: 
np, nq = Ω(log2 n)

E deg =
n
2

(p + q) = Ω(log2 n)

 
 

P = {𝒩(μ, σ2I),
𝒩(ν, σ2I)}

Q = (p q
q p)



Graph Convolutions



Graph Convolutions

Convolved feature matrix: 
X′￼ = D−1AX

X′￼u =
1

deg(u) ∑
v∈[n]

auvXv



What can graph convolution do?

Original Data

• Consider distributions with 2D features


• We cannot separate the classes linearly 
due to the large overlap between them



What can graph convolution do?

Original Data After graph convolution

Graph Convolution



What can graph convolution do?

Original Data After graph convolution

Graph Convolution

Graph convolution makes the data linearly separable



Graph improves linear separability

• Without the graph,


  


BCE Loss 


• With graph convolution, this threshold changes to


 

ζ =
∥μ − ν∥2

σ
= On(1) ⟹ ℙ({Xu}u∈[n] are linearly separable) = on(1)

≥ c ⋅ Φ(−ζ)

ζ = On ( 1
𝔼 deg ) Expected degree of a node



Graph improves linear separability

ζ



Graph improves linear separability

ζ

ω( log n)

Original and convolved 
data linearly separable



Graph improves linear separability

ζ

O(1) ω( log n)

Original and convolved 
data linearly separable

              

Original data 
linearly inseparable



Graph improves linear separability

ζ

O(1) ω( log n)ω
log n
E deg

Original and convolved 
data linearly separable

Convolved data 
linearly separable


Original data 
linearly inseparable



Graph improves linear separability

ζ

O(1) ω( log n)ω
log n
E deg

O ( 1
E deg )

Original and convolved 
data linearly separable

Convolved data 
linearly separable


Original data 
linearly inseparable

Original and convolved 
data linearly inseparable



Generalization
• For any new dataset  with different , the loss is bounded above


Loss  


• Loss increases with inter-class edge probability (noisy graph)

A, X n, Q
(A, X) ≤ C exp(−ζγ)



Part II
• Understanding a graph convolution operation [ICML 2021]

• Improvement in separability threshold

• Generalization error of the linear classifier


• Effects of graph convolutions in multilayer networks [ICLR 2023]

• Isolate convolutions from the layers of a neural network

• Understand effects in terms of relevant signals in the data


• Optimality of message-passing GNNs [NeurIPS 2023]

• Develop a notion of optimal classifier for node-classification problems

• Design a neural network architecture that can realize the optimal classifier



• Complete characterization of up to 2 graph convolutions (GCs) in 
networks with up to 3 layers


• Improvement in the classification threshold


• Comparison of various placement choices for convolutions


• Theoretical analysis on CSBM modelled after XOR data


• Empirical demonstration of results in various settings

Part II



Architecture
• Two sources of information: (A, X)

• A generalization of Kipf and Welling’s GCN with variable GCs at each layer

• Similar models analyzed previously with power iterations in the last layer 

[Gasteiger, Bojchevski, Günnemann (2019)] or first layer [Frasca et al., SIGN (2020)]:

• Empirically known to have comparable performance to SOTA

• input data


•  sigmoid function


•  output of the network


• number of GCs in layer 

X ∈ ℝn×d →
φ →
ŷ →
kl → l



Architecture
• Two sources of information: (A, X)

• A generalization of Kipf and Welling’s GCN with variable GCs at each layer

• Similar models analyzed previously with power iterations in the last layer 

[Gasteiger, Bojchevski, Günnemann (2019)] or first layer [Frasca et al., SIGN (2020)]:

• Empirically known to have comparable performance to SOTA

• input data


•  sigmoid function


•  output of the network


• number of GCs in layer 

X ∈ ℝn×d →
φ →
ŷ →
kl → l



Data model

• Linear classifiers can be realized using one-layer NNs


• Class of one-layer NNs is too simple to capture the extent of GC effects


• Need to look at multi-layer NNs for placement questions


• Relevant SNR in the data



Data model

• Four-component XOR-based CSBM


• Unif , Unif 


 if  
 if 


•

P = { (𝒩(±μ, σ2I)) (𝒩(±ν, σ2I))}

Xu ∼ 𝒩(±μ, σ2I) u ∈ C1
Xu ∼ 𝒩(±ν, σ2I) u ∈ C2

Q = (p q
q p)



Data model

• Four-component XOR-based CSBM


• Unif , Unif 


 if  
 if 


•

P = { (𝒩(±μ, σ2I)) (𝒩(±ν, σ2I))}

Xu ∼ 𝒩(±μ, σ2I) u ∈ C1
Xu ∼ 𝒩(±ν, σ2I) u ∈ C2

Q = (p q
q p)

Assumptions:


 ⟨μ, ν⟩ = 0
np, nq = Ω(log2 n)



Data model

Identified signals in data


ζ =
∥μ − ν∥

σ
, γ =

|p − q |
p + q

μ−μ

ν

−ν



Data model

Original input node features

GC in first layer 

Features after GC at the first layer

A typical two-layer GCN (one GC in each layer) performs poorly on this data



Main Result — With Graph
Number of GCs Perfect Classification Threshold

0 (Baseline)

1

2

ζ = ω( log n)

γ ⋅ ζ = ω( log n
n(p + q) )

γ2 ⋅ ζ = ω( log n
n )



Main result

Comparison of the performance of models with 1 GC vs 2 GCs



What did we learn?

• Classification capability is determined by the number of GCs rather than 
the number of layers in the neural network


• Placing convolutions in any combination among the layers obtains the 
same result IF there are no convolutions in the first layer



Experiments on real data

3-layer models on OGBN-ARXIV



Part III
• Understanding a graph convolution operation [ICML 2021]

• Improvement in separability threshold

• Generalization error of the linear classifier


• Effects of graph convolutions in multilayer networks [ICLR 2023]

• Isolate convolutions from the layers of a neural network

• Understand effects in terms of relevant signals


• Optimality of message-passing GNNs [NeurIPS 2023]

• Develop a notion of optimal classifier for node-classification problems

• Design a neural network architecture that can realize the optimal classifier



• Study of node classification on sparse feature-decorated graphs on a fairly 
general statistical data model 

• Define a notion of asymptotically local Bayes optimality 

• Design a message-passing GNN that realizes the optimal classifier 

• Generalization error bounds in terms of recognizable SNR

Part III



Optimal node-classification
• Require a notion of generalization error in a “per example” sense

52



Optimal node-classification
• Require a notion of generalization error in a “per example” sense


• Without relational information, the natural choice is Bayes risk, and the 
minimizer  is the Bayes optimal estimator


,                  

h*

R* = min
h

𝔼(X,y)∼P[L(y, h(X))] h* = arg min
h

𝔼[L(y, h(X))]
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Optimal node-classification
• Require a notion of generalization error in a “per example” sense


• Without relational information, the natural choice is Bayes risk, and the 
minimizer  is the Bayes optimal estimator


,                  


• For graphs, size of sample = size of graph  the right extension of Bayes risk 
for such data is unclear

h*

R* = min
h

𝔼(X,y)∼P[L(y, h(X))] h* = arg min
h

𝔼[L(y, h(X))]

→
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Optimal node-classification
• Require a notion of generalization error in a “per example” sense


• Without relational information, the natural choice is Bayes risk, and the 
minimizer  is the Bayes optimal estimator


,                  


• For graphs, size of sample = size of graph  the right extension of Bayes risk 
for such data is unclear


• Example: If  takes node  and the graph , the 
risk implicitly depends on the sample size  through 

h*

R* = min
h

𝔼(X,y)∼P[L(y, h(X))] h* = arg min
h

𝔼[L(y, h(X))]

→

h(u, Gn) u Gn ∼ CSBM(n, P, Q)
n Gn
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Optimal node-classification
Finding an interpretable notion of optimality:


• Try the infinite sample size limit to remove dependence on . 
But for a general class of estimators  unclear if the limit exists.


• Restrict attention to estimators that are only allowed “local” 
information around the nodes


Denote 
,    

n
→

Nk(u, G) = {v ∈ V(G) : dist(u, v) = k} ηk(u, G) = ∪0≤j≤k Nj(u)
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Optimal node-classification

Let  be a feature-decorated graph of  vertices.


For a fixed , an -local estimator is a function  that takes three inputs 
and predicts a classification label for each node :





Denote  to be the class of all -local estimators.

G = (A, X) n

ℓ > 0 ℓ h
u ∈ [n]

h(u, ηℓ(u), {Xv}v∈ηℓ(u))

𝒞ℓ ℓ

Definition ( -local estimator)ℓ
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Local weak convergence

• A rooted graph  is a graph  with a distinguished vertex , the root


•  with  and 


•   , a Poisson Galton-Watson tree


•  denotes local weak convergence [Bordenave, Ramanan, Banerjee]

(G, u) G u

{(Gn, un)}n≥1 Gn ∼ CSBM(n, P, Q) un ∼ Unif([n])

{(Gn, un)}n≥1 ⇝ (G, u)

⇝
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Optimal node-classification

A function  is the asymptotically -locally Bayes optimal estimator 
of the root of the sequence  if it minimizes the probability of 
misclassification of the root of the local weak limit , i.e.,


h*ℓ ∈ 𝒞ℓ ℓ
(Gn, un)

(G, u)

h*ℓ = arg min
h∈𝒞ℓ

ℙ[h(u, ηℓ(u, G), {Xv}v∈ηℓ(u,G)) ≠ yu]

Definition (asymptotically -locally Bayes optimal estimator)ℓ
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Optimal node-classification

For any , the optimal classifier of the root for the sequence  where 
 is


,


where ,  is the density associated with the distribution , and


ℓ ≥ 1 (Gn, un)
Gn ∼ CSBM(n, P, Q)

h*ℓ (u, ηℓ(u), {Xv}v∈ηℓ(u)) = arg max
i∈[C]

{log ρi(Xu) + ∑
v∈ηℓ(u)∖{u}

Mik(Xv)}

k = dist(u, v) ρi Pi ∈ P

Mik(x) = max
j∈[C]

{log ρj(x) + log((Qk)ij)}

Theorem (Optimal message-passing)
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What next?
• We obtained the asymptotically -locally Bayes optimal estimator for our 

statistical data model


• Interesting follow up questions:

ℓ
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What next?
• We obtained the asymptotically -locally Bayes optimal estimator for our 

statistical data model


• Interesting follow up questions:


• How do we interpret this result? Generalization guarantee? Comparison 
with other methods? SNR analysis?

ℓ
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What next?
• We obtained the asymptotically -locally Bayes optimal estimator for our 

statistical data model


• Interesting follow up questions:


• How do we interpret this result? Generalization guarantee? Comparison 
with other methods? SNR analysis?


• Optimal on the asymptotic model. What about the finite model?

ℓ
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What next?
• We obtained the asymptotically -locally Bayes optimal estimator for our 

statistical data model


• Interesting follow up questions:


• How do we interpret this result? Generalization guarantee? Comparison 
with other methods? SNR analysis?


• Optimal on the asymptotic model. What about the finite model?


• Is this estimator implementable as a neural network?

ℓ
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Interpretation

65


h*ℓ (u, ηℓ(u), {Xv}v∈ηℓ(u)) = arg max
i∈[C]

{ ∑
v∈ηℓ(u)

Mik(Xv)}

Mik(x) = max
j∈[C]

{log ρj(x) + log((Qk)ij)}



Interpretation

• If  then  

Highly informative graph, gather messages from all nodes in 

Q = pI h* = arg max
i∈[C]

{ ∑
v∈ηℓ(u)

log ρi(Xv)}
ηℓ(u)
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h*ℓ (u, ηℓ(u), {Xv}v∈ηℓ(u)) = arg max
i∈[C]

{ ∑
v∈ηℓ(u)

Mik(Xv)}

Mik(x) = max
j∈[C]

{log ρj(x) + log((Qk)ij)}



Interpretation

• If  then  

Highly informative graph, gather messages from all nodes in 


• If  then  

Uninformative graph, disregard all messages from other nodes

Q = pI h* = arg max
i∈[C]

{ ∑
v∈ηℓ(u)

log ρi(Xv)}
ηℓ(u)

Q = p11⊤ h* = arg max
i∈[C]

{log ρi(Xu)}
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h*ℓ (u, ηℓ(u), {Xv}v∈ηℓ(u)) = arg max
i∈[C]

{ ∑
v∈ηℓ(u)

Mik(Xv)}

Mik(x) = max
j∈[C]

{log ρj(x) + log((Qk)ij)}



Interpretation (2-block symmetric case)

,      with densities ,    
y ∈ {±1}n P = {P−, P+} {ρ−, ρ+} Q =
1
n (a b

b a)
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Interpretation (2-block symmetric case)

,      with densities ,    


Define  (signal in the graph component of the data)


y ∈ {±1}n P = {P−, P+} {ρ−, ρ+} Q =
1
n (a b

b a)
γ =

a − b
a + b

69



Interpretation (2-block symmetric case)

,      with densities ,    


Define  (signal in the graph component of the data)


,


where   ,      ,       

y ∈ {±1}n P = {P−, P+} {ρ−, ρ+} Q =
1
n (a b

b a)
γ =

a − b
a + b

h*ℓ (u, {Xv}v∈ηℓ(u)) = sgn(ψ(Xu) + ∑
v∈ηℓ(u)∖{u}

Mdist(u,v)(Xv))

Mk(x) = ψ(x)]c(k)

−c(k)
ψ(x) = log

ρ+(x)
ρ−(x)

c(k) = log ( 1 + γk

1 − γk )
70
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Interpretation (2-block symmetric case)

ζ =
2∥μ∥

σ
, γ = 0.42 ζ = 1, γ =

a − b
a + b
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Non-asymptotic case

Proposition (Tree neighbourhoods) [Massoulié 2014]

Let  with 


For  with , w.h.p., 
 fraction of nodes in  have cycle-free neighbourhoods.

G ∼ CSBM(n, {P−, P+}, Q) Q =
1
n (a b

b a)
ℓ = c log n c log((a + b)/2) < 1/4

1 − o (log4 n/ n) G

Asymptotically optimal estimator is still optimal for “most” nodes
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Non-asymptotic case
For an estimator , denote


• Misclassification error on the data model with  nodes (finite )


• Misclassification error on the limiting data model ( )


Recall that 


• How well does  do on the finite data model: 


• How does it compare to the actual optimal for finite ,

h ∈ 𝒞ℓ

ℰn(h) = n n

ℰ(h) = n → ∞

ℰ(h*ℓ ) = min
h∈𝒞ℓ

ℰ(h)

h*ℓ ℰn(h*ℓ )
n min

h∈𝒞ℓ

ℰn(h)
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Non-asymptotic case
Theorem (Error for fixed )n
For any  such that , we have








Remark: We can compute 

1 ≤ ℓ ≤ c log n c log((a + b)/2) < 1/4

ℰn(h*ℓ ) = min
h∈𝒞ℓ

ℰn(h) ± O ( 1
log2 n )

min
h∈𝒞ℓ

ℰn(h) = ℰ(h*ℓ ) ± O ( 1
log2 n )

ℰ(h*ℓ )



Implementation
Pre-computation


 for 


 performs entry-wise flattening 


 is an order 3 tensor, visualized as stacked multi-level adjacency matrices.

Ã(k) = f(Ak) ∧ (¬f (
k−1

∑
m=0

Am)) k ∈ {1,…, ℓ}

f(A) 1(Aij > 0)

Ã
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Implementation

76

 is visualized as stacked 
adjacency matrices.


Example describes 3-hop 
neighbourhoods for each node

Ã



Implementation




Label predictions:





Interpretation: 
Model learns the distributions  and the connectivity profile   via  and .

̂yu = arg max
i∈[C] (H(L)

u,c +
ℓ

∑
k=1

Ã(k)
u,:M(k)

:,i )
P Q H(L) Q

77



Convergence of parameters (training)

Weight vector Clip threshold



Recap
• Understanding a graph convolution operation [ICML 2021]

• Improvement in separability threshold

• Generalization error of the linear classifier


• Effects of graph convolutions in multilayer networks [ICLR 2023]

• Isolate convolutions from the layers of a neural network

• Understand effects in terms of relevant signals in the data


• Optimality of message-passing GNNs [NeurIPS 2023]

• Develop a notion of optimality for node-classification problems

• Design a neural network architecture that can realize the optimal classifier


