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Overview of Contributions

We study the node classification problem on feature-decorated graphs in

the sparse setting — expected degree O(1) in the number of nodes.
Such graphs are typically known to be locally tree-like.

 We introduce the notion of asymptotic local Bayes optimality for node
classification tasks and compute the optimal classifier according to this
criterion for a fairly general statistical data model.

* We show that this optimal classifier is implementable using a family of
message-passing GNN architectures.

« We then compute the generalization error of this classifier in terms of
naturally identifiable SNRs in the data and compare it against existing
learning methods and architectures.

« Extensive experiments demonstrate that the classifier is realizable via
training using SGD, and is superior to both a simple MLP and a GCN.

Data Model and Definitions

n = # of nodes
d = # of features per node

v, = class label of node u
C = # of classes

Node features:
X,~P, e R

P . = Feature distribution for class ¢

Edges:
A= (auv)u,ve[n] ~ SBM(x, Q)

Pr(a,, =11y, =iy, =)) = dij

G, ~ CSBM(n, P, Q) denotes a graph sampled from this model, with

}an RnXd _

adjacency matrix A € {0,1 and node features X &€

Questions
- What is the optimal classifier when [P and O are known?
« Can a message-passing architecture realize it by learning [P and O?

-local Classifiers (6 ,)

Input: a subgraph induced by nodes within the Z-hop neighbourhood of u,
n.(u) and the features { X, } Vv € n.(u).

Output: a class label for u.

Local Weak Convergence

. LWC
For a uniform at random root node u«,, the sequence (G,, u,) — (G, u),

a feature-decorated Poisson Galton-Watson tree.
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Optimal Classifier Characteristics

We say h:f is the asymptotically £-locally Bayes optimal classifier of

the root for the sequence {(G,, u,)} if it minimizes the misclassification

probability of the root of the local weak limit (G, u) over € .

For our data model:

h;k(u, {Xv}vEW(u)) — argmax{ lOg pz(Xu) + 2 Mi d(u,v)(Xv) }
iElC] venw\ {u)

M (x) = max {log pi(x) + log Ql.]]? }
JEIC]

Implementation: Message-Passing GNN Architecture
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M (x) = sgn(a — b) - CLIP({x, u), = c;), ¢, = log

What happens in the limits of Graph SNR?
« WhenI — 0, h? ignores all messages and collapses to a simple MLP.

« WhenI — 1, h:f collapses to a typical GCN.

. WhenI € (0,1), h;k interpolates and is superior to MLP and GCN.
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(a) Varying v with fixed I' = 0.42. (b) Varying I' with fixed v = 1.
Comparison with MLP and GCN (Kipf & Welling 2017).
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(a) Fixed graph signal I' = 0. (b) Fixed graph signal I' = 1.

Demonstration of collapsing to MLP and GCN in the limits of graph SNR.
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Convergence of model parameters to the ansatz during training.

Non-asymptotic setting
For fixed number of nodes n and 42" < logg 4,(n), the classifier i} is

0,(1) away from the true optimal in terms misclassification probability.

Code: github.com/opallab/optimality-mp-archs-sparse-graphs.
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