

UNIVERSITY OF WATERLOO

Overview of Contributions

We study the node classification problem on feature-decorated graphs in the sparse setting — expected degree O(1) in the number of nodes. Such graphs are typically known to be locally tree-like.

- We introduce the notion of asymptotic local Bayes optimality for node classification tasks and compute the optimal classifier according to this criterion for a fairly general statistical data model.
- We show that this optimal classifier is implementable using a family of message-passing GNN architectures.
- We then compute the generalization error of this classifier in terms of naturally identifiable SNRs in the data and compare it against existing learning methods and architectures.
- Extensive experiments demonstrate that the classifier is realizable via training using SGD, and is superior to both a simple MLP and a GCN.

Data Model and Definitions

n = # of nodes	$y_u = $ class label of node u
d = # of features per node	C = # of classes
Edges:	Node features:
$A = (a_{uv})_{u,v \in [n]} \sim \text{SBM}(n, Q)$	$X_u \sim \mathbb{P}_{y_u} \in \mathbb{R}^d$
$\Pr(a_{uv} = 1 \mid y_u = i, y_v = j) = q_{ij}$	\mathbb{P}_c = Feature distribution for class c

 $G_n \sim \text{CSBM}(n, \mathbb{P}, Q)$ denotes a graph sampled from this model, with adjacency matrix $A \in \{0,1\}^{n \times n}$ and node features $X \in \mathbb{R}^{n \times d}$.

Questions

- What is the optimal classifier when \mathbb{P} and Q are known?
- Can a message-passing architecture realize it by learning \mathbb{P} and Q?

ℓ -local Classifiers (\mathscr{C}_{ℓ})

Input: a subgraph induced by nodes within the ℓ -hop neighbourhood of u, $\eta_{\ell}(u)$ and the features $\{X_v\} \ \forall v \in \eta_{\ell}(u)$.

Output: a class label for *u*.

Local Weak Convergence

For a uniform at random root node u_n , the sequence $(G_n, u_n) \xrightarrow{LWC} (G, u)$, Ma feature-decorated Poisson Galton-Watson tree.

Optimality of Message-Passing Architectures for Sparse Graphs

Aseem Baranwal, Kimon Fountoulakis, Aukosh Jagannath

Optimal Classifier

We say h_{ℓ}^* is the **asymptotically** ℓ **-locally Bayes optimal** classifier of the root for the sequence $\{(G_n, u_n)\}$ if it minimizes the misclassification probability of the root of the local weak limit (G, u) over \mathscr{C}_{ℓ} .

For our data model:

$$h_{\ell}^{*}(u, \{X_{v}\}_{v \in \eta_{\ell}(u)}) = \underset{i \in [C]}{\operatorname{argmax}} \left\{ \log \rho_{i}(X_{u}) + \sum_{v \in \eta_{\ell}(u) \setminus \{u\}} M_{i \, d(u, v)}(X_{v}) \right\}$$
$$M_{ik}(x) = \underset{j \in [C]}{\operatorname{max}} \left\{ \log \rho_{j}(x) + \log Q_{ij}^{k} \right\}$$

Implementation: Message-Passing GNN Architecture

Graph signal
$$\Gamma = \frac{a-b}{a+b}$$
 Feature signal $\gamma = \frac{2||\mu||}{\sigma}$
 $h_{\ell}^{*}(u, \{X_{v}\}_{v \in \eta_{\ell}(u)}) = \operatorname{sgn}\left(\langle X_{u}, \mu \rangle + \sum_{v \in \eta_{\ell}(u) \setminus \{u\}} M_{d(u,v)}(X_{v})\right)$
 $M_{k}(x) = \operatorname{sgn}(a-b) \cdot \operatorname{CLIP}(\langle x, \mu \rangle, \pm c_{k}), \qquad c_{k} = \log\left(\frac{1+\Gamma^{k}}{1-\Gamma^{k}}\right)$

Characteristics

What happens in the limits of Graph SNR?

• When $\Gamma \to 0$, h_{ρ}^* ignores all messages and collapses to a simple MLP.

• When $\Gamma \to 1$, h_{ρ}^* collapses to a typical GCN.

• When $\Gamma \in (0,1)$, h_{ρ}^* interpolates and is superior to MLP and GCN.

Convergence of model parameters to the ansatz during training.

Non-asymptotic setting

For fixed number of nodes n and $4\ell \leq \log_{\mathbb{E} \deg}(n)$, the classifier h_{ℓ}^* is $o_n(1)$ away from the true optimal in terms misclassification probability.

Code: <u>github.com/opallab/optimality-mp-archs-sparse-graphs</u>.